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] Motivation for StreamingNLA (1 of 2)

Data are medium-sized, but things we want to compute are
“intractable,” e.g., NP-hard or n3 time, so develop an
approximation algorithm.

* E.g., streaming for linear algebra on Spark/Hadoop/HPC

Data are large/Massive/BIG, so we can’t even touch them all,
so develop a sublinear approximation algorithm.

* E.g., fire hose style of streaming

Goal (in TCS streaming): Develop an algorithm s.t.:

Typical Theorem: My algorithm is faster than the exact
algorithm, and it is only a little worse.



) Motivation for StreamingNLA (2 of 2)

Mahoney, “Approximate computation and implicit reqularization ...” (PODS, 2012 )

* Fact 1: | have not seen many examples (yet!?) where sublinear
algorithms are a useful quide for LARGE-scale "vector space” or
"machine learning” analytics

* Fact 2: | have seen real examples where sublinear algorithms are

very useful, even for rather small problems, but their usefulness is
not primarily due to the bounds of the Typical Theorem.

* Fact 3: | have seen examples where (both linear and sublinear)
approximation algorithms yield “better” solutions than the
output of the more expensive exact algorithm.

* Sublinear/streaming algorithms involving matrices/graphs (read
ML) are very different than other sublinear/streaming algorithms



Anecdote 1:
Communities in large informatics graphs

Mahoney “Algorithmic and Statistical Perspectives on Large-Scale Data Analysis” (2010) Data are expander-like at
Leskovec, Lang, Dasgupta, & Mahoney “"Community Structure in Large Networks ...” (2009) |arge size scales !l
People imagine social Real social networks Size-resolved conductance
networks to look like: actually look like: (degree-weighted expansion)
plot looks like:
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How do we know this plot is “correct”?
There do not exist good large

* (since computing conductance is intractable) clusters in these graphs !!!

* Lower Bound Result; Structural Result; Modeling Result; Etc.

* Algorithmic Result (ensemble of sets returned by different approximation algorithms are
very different)

* Statistical Result (Spectral provides more meaningful communities than flow)



. Anecdote 2:

] Randomized Matrix Algorithms

Mahoney “Algorithmic and Statistical Perspectives on Large-Scale Data Analysis” (2010)

Mahoney “Randomized Algorithms for Matrices and Data” (2011)

Theoretical origins Y

* theoretical computer science,
convex analysis, etc.

* Johnson-Lindenstrauss
* Additive-error algs
* Good worst-case analysis

* No statistical analysis

" Practical applications

* NLA, ML, statistics, data analysis,
genetics, etc

* Fast JL transform
* Relative-error algs
* Numerically-stable algs

* Good statistical properties

* No implementations

|

* Beats LAPACK & parallel-distributed
wplementations on terabytes of data

How to “bridge the gap”?

» decouple (implicitly or explicitly) randomization from linear algebra

* importance of statistical

leverage scores!



] The “core” RandNLA algorithm (10f2)

Drineas, Mahoney, etc., etc., etc. (200X, ...)

Problem: Over-constrained least squares (n x d matrix A,n >>d)

e Solve: Z = min ||Az — bl|o
r€ R4
* Solution: Topt = ATp

Randomized Meta-Algorithm: .
* For all i € [n], compute statistical leverage scores: p,; = E | |U(Z-) | |§

* Randomly sample O(d log(d)/ €) rows/elements fro A/b, using {p} as
importance sampling probabilities.

* Solve the induced subproblem: féopt — (SA)TSb

Theorem: This gives 1+e approximation, on the objective and the
certificate (but you might fail and you have € error and you are no faster).



The “core” RandNLA algorithm (20f2)
] Drineas, Mahoney, efc., etc., etc. (200X, ...)
A naive implementation of this meta-algorithm might fail, has
large € error, and is no faster, but ...

* Improve worst-case running time to O(nd log(d)) or O(nnz(A)+poly(d)) with smart random
projections and/or smart leverage score approximation

* Use sketch as preconditioner of iterative algorithm and smart engineering to get O(log(z/¢)) to
solve to machine precision and beat LAPACK w.r.t. wall-clock time

* Can solve least-squares and least absolute deviations on a terabyte of data to low/medium/
high precision

* Implement in streaming environments by “grafting” this linear algebraic structure with
projection sketches, heavy hitter sketches, etc.

* Can extend to get faster/more robust/more parallelizable low rank approximation of
“nice” (e.g., PDE) and “not nice” (e.g., social media) data

* Can control statistical properties by worrying about small leverage scores and getting kernel-
based methods with algorithmic/statistical bounds



, Streaming/sublinear matrix/graph algorithms

Focus on linear algebraic or spectral graph structure
* Then graft onto more or less idealized streaming concepts

* This structure gives fast algorithmic and good statistical properties (but
not always in the same way)

This is particularly necessary for “"analyst in the loop”
applications

* More relevant when you are “"data knowledgeable” (science, national
security, etc.)

* Less relevant when you are more data ignorant (e.q., internet search,
social media, etc.)



Local spectral optimization methods

Local spectral methods - provably-good local version of global spectral
STog: truncated “local” random walks to compute locally-biased cut
ACLo6: approximate locally-biased PageRank vector computations (with “push”)

Chungo8: approximate heat-kernel computation to get a vector

Q1: What do these procedures optimize approximately/exactly?
Q2: Can we write these procedures as optimization programs?



‘ Recall spectral graph partitioning

* Relaxation of:

The basic optimization problem: , E(S,S)
»(G) = min _
scv Vol(S)Vol(S)
minimize xTLGgg * Solvable via the eigenvalue
problem:
s.t. (x,x)p = Lay = \2(G)y
<:1’;, 1>D — () * Sweep cut of second eigenvector
yields-

A2(G)/2 < ¢(G) < /8X2(G

Also recall Mihail’s sweep cut for a general test vector:
Thm.Mihail] Let x be such that < 2,1 >p= 0. Then

there is a cut along x that satisfies ZT—T%Gf > ¢*(9)/8.




‘ Local spectral partitioning ansatz

Mahoney, Orecchia, and Vishnoi (2010)

Primal program: Dual program:
minimize z! Lax max o« — (1 — k)
L L.
s.t. <z,x>p=1 st. Lg>=alLg —p Kr | —B1
0 " vol(T') ~ vol(T)
<T,8$>p= K 8> 0
Interpretation: Interpretation:
* Find a cut well-correlated with the seed * Embedding a combination of scaled

complete graph K, and complete graphs T
and T (K; and Ky) - where the latter
encourage cuts near (T,I).

vectors.

* If sis a single node, this relax:
. E(S, S)
min —
Scv,ses,|s|<1/k Vol(S)Vol(5)




Main results
Mahoney, Orecchia, and Vishnoi (2010)

Algorithmic Theorem: If x* is an optimal solution to LocalSpectral, itis a
result, that Generalized Personalized PageRank vector for parameter

computing the

solutionis“fast.” o, and it can be computed as solution to a set of linear eqgns.

upperbound, as  Theorem: If x* is optimal solution to LocalSpect(G,s, k), one

usual from sweep

cracheeger.  CanN find a cut of conductance = 8M(G,s,x) in time O(n Ig n)
with sweep cut of x*.

Lowerbound:  Theorem: Let s be seed vector and k¥ correlation parameter.
Spectral version of

flow-improverment FOT all sets of nodes T s.t. k' :=<s,5:>,2, we have: ¢(T) = A
2lgs (G,s,x) if k =x’, and ¢(T) = (iK' K)MG,s,x) if K’ <K .
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 Similar results if we
do local random walks,
truncated PageRank,
and heat kernel
diffusions.

 Often, it finds
“worse” quality but
“nicer” partitions than
flow-improve
methods. (Tradeoff
we'll see later.)



‘ New methods are useful more generally

Maji, Vishnoi,and Malik (2011) applied Mahoney, Orecchia, and Vishnoi (2010)

‘-' -
BT

* Cannot find the tiger with global eigenvectors.

* Can find the tiger with our LocalSpectral method!



. Spectral algorithms and
] the PageRank problem/solution

= The PageRank random surfer

1. With probability 8, follow a
random-walk step

2. With probability (1-8), jump
randomly ~ dist. v

= Goal: find the stationary dist. x
x=B8AD 'x+(1 = B)v

= Alg: Solve the linear system
(1— BAD )x = (1 — B)v

s . Solution
Symmetric adjacency matrix Jump vector

Diagonal degree matrix



Push Algorithm for PageRank

= Proposed (in closest form) in Andersen, Chung, Lang
(also by McSherry, Jeh & Widom) for personalized PageRank

= Strongly related to Gauss-Seidel (see Gleich’s talk at Simons for this)

= Derived to show improved runtime for balanced solvers




] Why do we care about “"push”?

.. Used for empirical

studies of has a single one here
“communities”

.. Used for “fast :
PageRank” “S=SNCd
approximation e

m Produces sparse
approximations to

PageRank!

= Why does the "push
method” have such Newman'’s netscience
empirical utility? 379 vertices, 1828 nnz

“zero” on most of the nodes



New connections between PageRank,
. spectral methods, localized flow, and sparsity
] inducing regularization terms

Gleich and Mahoney (2014)

* A new derivation of the PageRank vector for an undirected
graph based on Laplacians, cuts, or flows

* A new understanding of the “"push” methods to compute
Personalized PageRank

* The “push” method is a sublinear algorithm with an implicit
regularization characterization ...

* ...that “explains” it remarkable empirical success.



‘ The s-t min-cut problem

Unweighted incidence matrix
Diagonal capacity matrix

minimize  ||Bx||c 7 = >_jce CijlXi — Xl
subjectto xs=1,x=0,x> 0.



The localized cut graph

Gleich and Mahoney (2014)

= |lads A adg

Connect s to vertices

in S with weight o - degree

Connect t to vertices

in S with weight « - degree

= Related to a construction
used in “FlowImprove”
Andersen & Lang (2007);

and Orecchia & Zhu
(2014)

"0 oadl O

0 adl O



‘ The localized cut graph

Gleich and Mahoney (2014)

Connect s to vertices
in S with weight o - degree
Connect t to vertices
20 in Swith weight « - degree

e —|3 0
Bs=|0 B 0
0 -5 e

Solve the s-t min-cut
minimize  ||BsX||g,

subjectto xs=1,x=0
x > 0.




] The localized cut graph

Gleich and Mahoney (2014)

3a Connect s to vertices
in S with weight o - degree
Connect ¢ to vertices
20  in S with weight « - degree

e —|3 0
Bs=|0 B O
0 -5 e
Solve the “electrical flow”
s-t min-cut

minimize || BsX||¢(a)2

subjectto xs=1,x=0



] s-t min-cut -> PageRank

Gleich and Mahoney (2014)

The PageRank vector z that solves Proof

Square and expand
(aD+L)z = av the objective into

with v = dg/vol(S) is a renormalized a Laplacian, then
apply constraints.

solution of the electrical cut computation:
minimize  |[BsX|/g 42
subjectto xs=1,x; =0.
Specifically, if x is the solution, then

’
X = |vol(S)z
0




, PageRank -> s-t min-cut

Gleich and Mahoney (2014)

= That equivalence works if v is degree-weighted.
= What if v is the uniform vector?

0 as’ 0
S A a(d — s)
0 old-s)’ 0

= Easy to cook up popular diffusion-like problems and adapt

them to this framework. E.g., semi-supervised learning (Zhou
et al. (2004).



. Back to the push method:
] sparsity-inducing reqgularization

Gleich and Mahoney (2014)

Let x be the output from the push method
with0 < 8 <1, v=dg/vol(S),
p=1, and 7 > 0.

_1-8 . _ :
Set a = 3 K Tvol(S) /5, and let zs solve: Need for

. . . 2 . .
minimize %HBSZHC(Q),Q ¥ k|| DZ|; normalization

subjectto zs=1,z,=0,z>0  Regularization
for sparsity

1

where z = [ZOG} : Proof Write out KKT conditions
Show that the push method

Then x = Dz /vol(S). solves them. Slackness was “tricky”



] Success strategy for RandNLA

"Decouple” randomness from vector space structure

Importance of statistical leverage scores (a “non-pathological”
problem-specific complexity measure)

This led to:

* Much better worst-case bounds (in theoretical computer science)

* Much better statistical properties (in machine learning and statistics)
* Much better implementations (in RAM, parallel, distributed, etc.)

* Much better usefulness in applications (genetics, astronomy, imaging, etc.)



. Success strategy for Sublinear/Streaming
, Graph (and Matrix, i.e., ML) Analytics

Don't over-optimize to worst-case analysis

* matrices (including spectral graph theory) are much more structured
objects than general metric spaces

* so the bar is higher to get fine results (think all of NLA and scientific
computing)

Need more realistic models of data presentation (details of
data presentation/layout matter a lot)

* often a tradeoff between speed and statistical meaningfulness

Understand implicit statistical properties in scalable algorithms

* this gives “better” algorithms for even modest-sized data



